- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Huang, Taoan (2)
-
Chen, Weizhe (1)
-
Fang, Fei (1)
-
Juba, Brendan (1)
-
Koenig, Sven (1)
-
Pendurkar, Sumedh (1)
-
Sharon, Guni (1)
-
Shen, Weiran (1)
-
Singh, Rohit (1)
-
Zhang, Jiapeng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The A* algorithm is commonly used to solve NP-hard combinatorial optimization problems. When provided with a completely informed heuristic function, A* can solve such problems in time complexity that is polynomial in the solution cost and branching factor. In light of this fact, we examine a line of recent publications that propose fitting deep neural networks to the completely informed heuristic function. We assert that these works suffer from inherent scalability limitations since --- under the assumption of NP P/poly --- such approaches result in either (a) network sizes that scale super-polynomially in the instance sizes or (b) the accuracy of the fitted deep neural networks scales inversely with the instance sizes. Complementing our theoretical claims, we provide experimental results for three representative NP-hard search problems. The results suggest that fitting deep neural networks to informed heuristic functions requires network sizes that grow quickly with the problem instance size. We conclude by suggesting that the research community should focus on scalable methods for integrating heuristic search with machine learning, as opposed to methods relying on informed heuristic estimation.more » « less
-
Shen, Weiran; Chen, Weizhe; Huang, Taoan; Singh, Rohit; Fang, Fei (, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence)Although security games have attracted intensive research attention over the past years, few existing works consider how information from local communities would affect the game. In this paper, we introduce a new player -- a strategic informant, who can observe and report upcoming attacks -- to the defender-attacker security game setting. Characterized by a private type, the informant has his utility structure that leads to his strategic behaviors. We model the game as a 3-player extensive-form game and propose a novel solution concept of Strong Stackelberg-perfect Bayesian equilibrium. To compute the optimal defender strategy, we first show that although the informant can have infinitely many types in general, the optimal defense plan can only include a finite (exponential) number of different patrol strategies. We then prove that there exists a defense plan with only a linear number of patrol strategies that achieve the optimal defender's utility, which significantly reduces the computational burden and allows us to solve the game in polynomial time using linear programming. Finally, we conduct extensive experiments to show the effect of the strategic informant and demonstrate the effectiveness of our algorithm.more » « less
An official website of the United States government

Full Text Available